Showing posts with label kesehatan. Show all posts
Showing posts with label kesehatan. Show all posts

1/29/2016

Cara Menyembuhkan Luka Bakar Dengan Lidah Buaya

menyembuhkan luka bakar dengan lidah buaya
Terkena luka bakar bisa menjadi sesuatu yang merepotkan. Rasanya tidak nyaman melakukan sesuatu sambil menahan rasa panas di kulit yang terbakar. Anda yang yang pernah mengalami hal ini tentu sangat bisa memahaminya. 

Tersulut api, terkena knalpot, terpercik minyak goreng panas, semua ini bisa membuat kulit terbakar. Radiasi sinar X juga bisa menimbulkan luka bakar. Kulit melepuh dan mengelupas, lalu perih kadang tidak tertahankan. Ada cara mudah tapi efektif untuk mengatasi luka bakar seperti ini, yaitu dengan lidah buaya.

Anda tidak asing bukan dengan tanaman yang satu ini? Lidah buaya atau dalam bahasa Jawa dikenal sebagai jadam bisa dimanfaatkan untuk mengobati luka bakar. Caranya sangat mudah. Cukup potong pangkal daunnya, kemudian oleskan gel lidah buaya ke bagian yang terluka. Untuk memaksimalkan hasilnya, sediakan kain bersih untuk perban. Gel lidah buaya akan menghadirkan rasa dingin ke kulit yang terbakar. 

Kandungan Zat Berkhasiat Dalam Lidah Buaya


Lidah buaya alias Aloe vera memiliki berbagai senyawa alami yang memiliki berbagai fungsi. Zat-zat itu antara lain saponin, lignin, senyawa antrakinon, kuinon, gula, enzim dan asam amino. Dalam buku Materia Medica yang ditulis oleh seorang pandai dari Yunani, Deocorides pada tahun 74 M, lidah buaya disebut memiliki khasiat sebagai purgatif alias pencahar. Anda yang terkena sembelit, susah buang air besar bisa memakai lidah buaya untuk dikonsumsi.

lidah buaya luka bakar

Khusus untuk luka, termasuk luka bakar, lidah buaya bekerja dengan membersihkan luka dan merangsang pertumbuhan jaringan baru alias epitelisasi. Saponin berfungsi sebagai antiseptik atau membersihan luka. Senyawa antrakinon dan kuinon bekerja seperti antibiotik dan analgetik atau penghilang rasa sakit. Senyawa-senyawa itu bekerja secara bersama dalam menyembuhkan luka bakar. 

Aloe punya sifat mudah teroksidasi yang ditandai dengan perubahan warna gel menjadi kecokelatan. Meski demikian, aloe akan cepat 'menutup diri' dengan membentuk jaringan kulit baru yang membuatnya tahan disimpan dalam waktu lama setelah dipotong dari pokok tanamannya.

Lidah buaya memiliki khasiat pengobatan lain yang cukup banyak. Selain itu tumbuhan ini banyak dimanfaatkan sebagai bahan baku produk kecantikan. Anda bisa memperoleh lidah buaya dengan mudah, bahkan menanamnya sendiri di rumah. Selain menjadi penolong ketika terkena luka bakar dan berbagai manfaat lain, aloe juga akan menjadi tanaman hias yang cantik. 

Satu lagi, kealamian aloe membuat Anda aman dari efek samping yang umum terjadi pada obat-obatan modern. Jadi, lain kali jika Anda terkena luka bakar, jangan panik lebih dulu. Ambil buaya dan pakai itu untuk menyembuhkan lukanya.


image atas dari: netra-agro.com

1/28/2016

Kebenaran Di Balik Rahasia Vaksin - Bagian 10 (Tamat)



Kesimpulan

risiko imunisasi Pertemuan super rahasia ini diadakan untuk membahas sebuah penelitian yang dilakukan oleh dr. Thomas Verstraeten dan rekan-rekannya dengan menggunakan data dari Vaccine Safety Datalink sebagai suatu proyek kolaborasi antara Program Imunisasi Nasional (NIP) milik CDC dan empat organisasi pemeliharaan kesehatan (HMO). Penelitian itu memeriksa 110.000 anak. Dalam batasan data itu, mereka melakukan kajian yang sangat cermat dan menemukan hal-hal berikut ini:

1.   Paparan terhadap vaksin berthimerosal pada usia satu bulan dikaitkan dengan penderitaan dan kelainan kebahagiaan yang berhubungan dengan dosis. Semakin tinggi paparan thimerosal pada anak, semakin tinggi pula kelainan yang dialami. Kelainan ini ditandai dengan menangisnya bayi tanpa terkendali dan lebih banyak bertingkah daripada bayi yang normal. 

2.   Ditemukan suatu peningkatan risiko ADD yang hampir signifikan dengan paparan 12,5 µg pada satu usia bulan.

3.    Paparan di usia 3 bulan, mereka menemukan peningkatan risiko kelainan perkembangan saraf seiring paparan thimerosal yang menigkat. Hal ini secara statistik signifikan. Kelainan ini termasuk gangguan bicara.

Penting untuk diingat bahwa kelompok kontrol yang digunakan bukanlah anak-anak yang tidak terpapar thimerosal, namun anak-anak dengan paparan thimerosal 12,5 µg. Artinya, ada kemiripan yang nyata sehingga terdapat lebih banyak masalah perkembangan saraf yang akan terlihat seandainya mereka memakai kontrol yang bebas thimerosal. 

Tidak seorangpun yang menolak jika penemuan ini signifikan dan mengusik. Tetapi, pada kajian final yang dipublikasikan di jurnal Pediatrics, dr. Verstraeten dan kawan-kawan melaporkan tidak adanya hubungan yang konsisten antara vaksin berthimerosal dan masalah-masalah perkembangan saraf. Tambahan, dia menyebutkan dirinya bekerja di di CDC, tidak membuka fakta bahwa saat artikel itu diterima, dia bekerja untuk Glaxo Smith Kline, sebuah pabrik vaksin.

Jadi, bagaimana mereka melakukan trik sulap itu? Mereka hanya menambahkan HMO lain ke data, yaitu Harvard Pilgrimage. Senator Dave Weldon menulis dalam suratnya ke direktur CDC bahwa HMO ini telah diambil alih oleh negara bagian Massachusetts akibat rekam jejaknya yang kacau. Tapi, penelitian ini mampu melenyapkan data yang memalukan dari penelitiannya terdahulu. Usaha Senator Weldon untuk memaksa CDC agar merilis data itu ke peneliti independen, dr. Mark Geier, seorang peneliti yang memiliki kredensial tanpa cacat dan terpublikasi secara luas di jurnal-jurnal peer-reviewed (karya pengarang dievaluasi oleh satu atau lebih pakar lain di bidang yang sama) telah berulang kali gagal.

Jalaslah bahwa penutup-nutupan yang masif sedang berlangsung, seperti yang telah kita lihat dalam banyak skandal lainnya, fluoride, eksitotoksin dalam makanan, pestisida, aluminium dan kini vaksin. Saya memperingatkan mereka yang kritis terhadap vaksin agar tidak hanya menyoroti satu zat saja, yaitu thimerosal sebagai biang masalah utama. Tidak perlu dipertanyakan lagi bila thimerosal punya peran besar, tapi ada faktor-faktor lain yang juga penting, termasuk aluminium, kompleks fluoroaluminium dan aktivasi kronis mikroglia otak.

Adalah fakta jika aktivasi mikroglia yang berlebih dan kronis dapat menjelaskan banyak efek dari paparan vaksin berlebihan seperti yang saya tunjukkan dalam dua artikel yang terbit baru-baru ini. Satu sifat dari aluminium dan merkuri adalah aktivasi mikroglia. Dengan aktivasi mikroglia, eksitotoksin berkonsentrasi besar dan sitokin neurotoksik pun dikeluarkan. Keduanya telah terbukti merusak koneksi sinap, dendrit dan menyebabkan perkembangan jalur saraf yang tidak normal pada otak yang sedang berkembang, juga pada otak orang dewasa.

Intinya, ada terlalu banyak vaksin yang diberikan kepada anak-anak selama masa pertumbuhan otak yang paling cepat. Logam-logam yang diketahui beracun dipakai dalam vaksin sehingga mengganggu metabolisme otak, enzim-enzim antioksidan, merusak DNA dan enzim-enzim perbaikan DNA dan memicu eksitotoksisitas. Mengeluarkan merkuri akan membantu namun tidak akan menyelesaikan masalah karena aktivasi berlebihan sistem imun otak akan menyebabkan kerusakan neurologis dengan tingkat keparahan yang bervariasi pada otak yang sedang berkembang yang (sifatnya) sangat rentan.

(Tamat)


References For This Article
  1. Lorscheider, FL; Vimy, MJ; Pendergrass, JC; Haley, BE. Mercury vapor exposure inhibits tubulin binding to GTP in rat brain: A molecular lesion also present in human Alzheimer brain From: FASEB J. 9(4): A-3845. FASEB Annual Meeting, Atlanta, Georgia, 10 March 1995.
  2. Grandjean P, Budtz-Jorgensen E, White RF, Jorgensen PJ, Weihe P, Debes F, Keiding N Methylmercury exposure biomarkers as indicators of neurotoxicity in children aged 7 years. From: Am J Epidemiol 1999 Aug 1;150(3):301-5.
  3. Albers JW, Kallenbach LR, Fine LJ, Langolf GD, Wolfe RA, Donofrio PD, Alessi AG, Stolp-Smith KA, Bromberg MB Neurological abnormalities associated with remote occupational elemental mercury exposure. Ann Neurol 1988 Nov;24(5):651-9.
  4. Aschner M, Lorscheider FL, Cowan KS, Conklin DR, Vimy MJ, Lash LH Metallothionein induction in fetal rat brain and neonatal primary astrocyte cultures by in utero exposure to elemental mercury vapor (Hg0). From: Brain Res 1997 Dec 5;778(1):222-32.
  5. Soederstroem S, Fredriksson A, Dencker L & Ebendal T The effect of mercury vapour on cholinergic neurons in the fetal brain: studies on the expression of nerve growth factor and its low- and high-affinity receptors. Developmental Brain Research 85(1):96-108 (1995).
  6. Drasch G, Schupp I, Hofl H, Reinke R & Roider G. Mercury burden of human fetal and infant tissues. Eur J Pediatr 153:607-610 (1994).
  7. Szucs A, Angiello C, Salanki J, Carpenter DO Effects of inorganic mercury and methylmercury on the ionic currents of cultured rat hippocampal neurons. Cell Mol Neurobiol 1997 Jun;17(3):273-88.
  8. Low-Level Exposure to Methylmercury Modifies Muscarinic Cholinergic Receptor Binding Characteristics in Rat Brain and Lymphocytes: Physiologic Implications and New Opportunities in Biologic Monitoring Teresa Coccini,1 Giovanna Randine,2 Stefano M. Candura,1,3 Rossella E. Nappi,2,3 Leon D. Prockop,4 and Luigi Manzo.
  9. Sorg O, Schilter B, Honegger P, Monnet-Tschudi F Increased vulnerability of neurones and glial cells to low concentrations of methylmercury in a prooxidant situation. Acta Neuropathol (Berl) 1998 Dec;96(6):621-7.
  10. Liang YX, Sun RK, Sun Y, Chen ZQ, Li LH Psychological effects of low exposure to mercury vapor: application of a computer-administered neurobehavioral evaluation system. Environ Res 1993 Feb;60(2):320-7.
  11. Sundberg J, Jonsson S, Karlsson MO, Oskarsson A Lactational exposure and neonatal kinetics of methylmercury and inorganic mercury in mice. Toxicol Appl Pharmacol 1999 Jan 15;154(2):160-9.
  12. Inouye M., Murao K., Kajiwara Y., Behavorial and neuropathological effects of prenatal methyl Mercury exposure in mice.. Neurobehav.Toxicol Teratol. ,1985:7;227-232.
  13. Koos et al., Mercury toxicity in pregnant women, fetus and newborn infant. Am J Obstet And Gynecol., 1976:126;390-409.
  14. Khera et al., Teratogenic and genetic effects of Mercury toxicity. The biochemistry of Mercury in the environment. Nriagu, J.O.Ed Amsterdam Elsevier, 503-18,1979.
  15. Drasch G, Schupp I, Hofl H, Reinke R, Roider G Mercury burden of human fetal and infant tissues. Eur J Pediatr 1994 Aug;153(8):607-10.
  16. Yoshida M, Yamamura Y, Satoh H Distribution of mercury in guinea pig offspring after in utero exposure to mercury vapor during late gestation Arch Toxicol 1986 Apr;58(4):225-8.
  17. Yuan,Y; Atchison,WD. Comparative effects of inorganic divalent mercury, methylmercury and phenylmercury on membrance excitability and synaptic transmission of CA1 neurons in hippocampal slices of the rat Neurotoxicology. 14(2):403-411, 1994.
  18. Desi I, Nagymajtenyi L, Schulz H Effect of subchronic mercury exposure on electrocorticogram of rats. Neurotoxicology 1996 Fall-Winter;17(3-4):719-23.
  19. Bucio L, Garcia C, Souza V, Hernandez E, Gonzalez C, Betancourt M, Gutierrez-Ruiz MC Uptake, cellular distribution and DNA damage produced by mercuric chloride. Mutat Res 1999 Jan 25;423(1-2):65-72.
  20. Hua MS, Huang CC, Yang YJ Chronic elemental mercury intoxication: neuropsychological follow-up case study. Brain Inj 1996 May;10(5):377-84.
  21. Grandjean P, Weihe P, White RF, Debes F Cognitive performance of children prenatally exposed to "safe" levels of methylmercury. Environ Res 1998 May;77(2):165-72.
  22. Hock C, Drasch G, Golombowski S, Muller-Spahn F, Willershausen-Zonnchen B, Schwarz P, Hock U, Growdon JH, Nitsch RM Increased blood mercury levels in patients with Alzheimer's disease. J Neural Transm 1998;105(1):59-68.
  23. Oskarsson A, Palminger Hallen I & Sundberg J. Exposure to toxic elements via breast milk. Analyst 120(3):765-770 (1995).
  24. Hock C, Drasch G, Golombowski S, Muller-Spahn F, Willershausen-Zonnchen B, Schwarz P, Hock U, Growdon JH, Nitsch RM Increased blood mercury levels in patients with Alzheimer's disease. J Neural Transm 1998;105(1):59-68.
  25. Wenstrup D, Ehmann WD, Markesbery WR Trace element imbalances in isolated subcellular fractions of Alzheimer's disease brains. Brain Res 1990 Nov 12;533(1):125-31
  26. Basun H, Forssell LG, Wetterberg L, Winblad B Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer's disease. J Neural Transm Park Dis Dement Sect 1991;3(4):231-58.
  27. Hock C, Drasch G, Golombowski S, Muller-Spahn F, Willershausen-Zonnchen B, Schwarz P, Hock U, Growdon JH, Nitsch RM Increased blood mercury levels in patients with Alzheimer's disease. J Neural Transm 1998;105(1):59-68.
  28. Pendergrass JC, Haley BE, Vimy MJ, Winfield SA, Lorscheider FL Mercury vapor inhalation inhibits binding of GTP to tubulin in rat brain: similarity to a molecular lesion in Alzheimer diseased brain. Neurotoxicology 1997;18(2):315-24.
  29. Opitz H, Schweinsberg F, Grossmann T, Wendt-Gallitelli MF, Meyermann R Demonstration of mercury in the human brain and other organs 17 years after metallic mercury exposure. Clin Neuropathol 1996 May-Jun;15(3):139-44.
  30. Sanfeliu C, Sebastia J, Cristofol R, Rodriguez-Farre E. Neurotoxicity of organomercurial compounds. Neurotox Res. 2003;5(4):283-305.
  31. el-Fawal HA, Gong Z, Little AR, Evans HL Exposure to methylmercury results in serum autoantibodies to neurotypic and gliotypic proteins.Neurotoxicology 1996 Summer;17(2):531-9.
  32. Faustman EM, Ponce RA, Ou YC, Mendoza MA, Lewandowski T, Kavanagh T. Investigations of methylmercury-induced alterations in neurogenesis. Environ Health Perspect. 2002 Oct;110 Suppl 5:859-64.
  33. Reading R. Thimerosal and the occurrence of autism: negative ecological evidence from Danish population-based data. Child Care Health Dev. 2004 Jan;30(1):90-1.
  34. Qvarnstrom J, Lambertsson L, Havarinasab S, Hultman P, Frech W. Determination of methylmercury, ethylmercury, and inorganic mercury in mouse tissues, following administration of thimerosal, by species-specific isotope dilution GC-inductively coupled plasma-MS. Anal Chem. 2003 Aug 15;75(16):4120-4.
  35. Shanker G, Syversen T, Aschner M. Astrocyte-mediated methylmercury neurotoxicity. Biol Trace Elem Res. 2003 Oct;95(1):1-10.
  36. Zheng W, Aschner M, Ghersi-Egea JF. Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol. 2003 Oct 1;192(1):1-11.
  37. Kawase T, Ishikawa I, Orikasa M, Suzuki A. An assessment of the impact of thimerosal on childhood neurodevelopmental disorders. Geier DA, Geier MR. J Biochem (Tokyo). 1989 Jul; 106(1): 8-10. Aluminum enhances the stimulatory effect of NaF on prostaglandin E2 synthesis in a clonal osteoblast-like cell line, MOB 3-4, in vitro. Pediatr Rehabil. 2003 Apr-Jun;6(2):97-102.
  38. Geier MR, Geier DA. Thimerosal in childhood vaccines, neurodevelopmental disorders, and heart disease in the United States. J Amer Physc Surg 8: 6-11, 2003.
  39. Allen JW, Shanker G, Tan KH, Aschner M. The consequences of methylmercury exposure on interactive functions between astrocytes and neurons. Neurotoxicology 23: 755-759, 2002.
  40. Hansen JC, Reske-Nielsen E, et al. Distribution of dietary mercury in a dog. Quantitation and localization of total mercury in organs and central nervous system. Sci Total Environ 78: 23-43, 1989.
  41. Zanoli P, Cannazza G, Baraldi M. Prenatal exposure to methyl mercury in rats: focus on changes in kyrenine pathway. Brain Res Bull 55: 235-238, 2001.
  42. Olivieri G, Brack C, et al. Mercury induces cell cytotoxicity and oxidative stress and increases beta-amyloid secretion and tau phosphorylation in SHY5Y neuroblastoma cells. J Neurochem 74: 231-236, 2000.
  43. Juarez BI, Mattinez M, et al. Methylmercury increases glutamate extracellular levels in frontal cortex of awake rats. Neurotoxicology and Teratology 24: 767-771, 2002.
  44. Geier DA, Geier MR. An assessment of the impact of thimerosal on childhood neurodevelopmental disorders. Pediatric Rehabil 6: 97-102, 2003.
  45. Geier DA, Geier MR. A comparative evaluation of the effects of MMR immunization and mercury doses from thimerosal-containing childhood vaccines on the population prevalence of autism. Med Sci Monit 10: P133-139, 2004.
  46. Baskin DS, Ngo H, Didenko VV. Thimerosal indices DNA breaks, caspase-3 activation, membrane damage, and cell death in cultured human neurons and fibroblast. Toxicol Sci 74: 361-368, 2003.
  47. Pichichero ME, et al. Mercury concentrations and metabolism in infants receiving vaccines containing thimerosal: a descriptive study. Lancet 360: 1737-1741, 2002.
  48. Murata K, Dakeishi M. Impact of prenatal methylmercury exposure on child neurodevelopment in the Faroe Islands. Nippon Eiseigaku Zasshi 57: 564-570, 2002.
  49. Davidson PW, Myers GJ, et al (Clarkson TW-member of panel) Effects of prenatal and postnatal exposure from fish consumption on neurodevelopment: outcomes at 66 months of age in the Seychelles Child Development Study. JAMA 280: 701-707, 1998.
  50. Palumbo DR, Cox C, et al. (ClarksonTW) Association between prenatal exposure to methylmercury and cognitive functioning in Seychellois children: a reanalysis of the McCarthy Scales of Children's Ability from the main cohort study. Environ Res 84: 81-88, 2000.
  51. Hornig M, Chian D, Lipkin WI. Neurotoxic effects of postnatal thimerosal are mouse strain dependent. Mol Psychiatry (In press).
  52. Ueha-Ishibashi T, et al. Property of thimerosal-induced decrease in cellular content of gluatathione in rat thymocytes: a flow cytometric study with 5-chloromethylfluorescein. Toxicol in Vitro 18: 563-569, 2004.
  53. Ueha-Ishibaschi T, et al. Effect of thimerosal, a preservative in vaccines, on intracellular Ca+2 concentration of ra cerebellar neurons. Toxicology 195: 77-84, 2004.
  54. Havarinasab S, Lambertsson L, et al. Dose-response study of thimerosal-induced murine systemic autoimmunity. Toxicol Appl Pharmacol 194: 169-179, 2004.
  55. Verstraeten T, Davis RL, DeStefano F, et al. Safety of thimerosal-containing vaccines: a two-phase study of computerized health maintenance organization databases. Pediatrics 112: 1039-1048, 2003. (This is the published study that was discussed in the conference. Here the damaging data is erased and the public is told the thimerosal-containing vaccines are perfectly safe. In this paper Dr. Verstraeten identified himself as working for the CDC, but in fact he is working for GlaxoSmithKline. The editors of the journal Pediatrics should have been willing to disclose this information once it was brought to their attention but they would not.).
Aluminum References
  1. Murayama H, Shin RW, Higuchi J, Shibuya S, Muramoto T, Kitamoto T. Interaction of aluminum with PHFtau in Alzheimer's disease neurofibrillary degeneration evidenced by desferrioxamine-assisted chelating autoclave method.Am J Pathol. 1999 Sep;155(3):877-85.
  2. Shin RW, Kruck TP, Murayama H, Kitamoto T. A novel trivalent cation chelator Feralex dissociates binding of aluminum and iron associated with hyperphosphorylated tau of Alzheimer's disease. Brain Res. 2003 Jan 24;961(1):139-46.
  3. Li W, Ma KK, Sun W, Paudel HK. Phosphorylation sensitizes microtubule-associated protein tau to Al(3+)-induced aggregation. Neurochem Res. 1998 Dec;23(12):1467-76.
  4. Singer SM, Chambers CB, Newfry GA, Norlund MA, Muma NA. Tau in aluminum-induced neurofibrillary tangles. Neurotoxicology. 1997;18(1):63-76.
  5. Toda S, Yase Y. Effect of aluminum on iron-induced lipid peroxidation and protein oxidative modification of mouse brain homogenate. Biol Trace Elem Res. 1998 Feb;61(2):207-17.
  6. Sayre LM, Perry G, Harris PL, Liu Y, Schubert KA, Smith MA. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer's disease: a central role for bound transition metals. J Neurochem. 2000 Jan;74(1):270-9.
  7. Xie CX, Yokel RA. Aluminum facilitation of iron-mediated lipid peroxidation is dependent on substrate, pH and aluminum and iron concentrations. Arch Biochem Biophys. 1996 Mar 15;327(2):222-6.
  8. Kawase T, Ishikawa I, Orikasa M, Suzuki A. Aluminum enhances the stimulatory effect of NaF on prostaglandin E2 synthesis in a clonal osteoblast-like cell line, MOB 3-4, in vitro. J Biochem (Tokyo). 1989 Jul; 106(1): 8-10.
  9. Jope RS. Modulation of phosphoinositide hydrolysis by NaF and aluminum in rat cortical slices. J Neurochem. 1988 Dec; 51(6): 1731-6.
  10. Blair HC, Finch JL, Avioli R, Crouch EC, Slatopolsky E, Teitelbaum SL. Micromolar aluminum levels reduce 3H-thymidine incorporation by cell line UMR 106-01. Kidney Int. 1989 May; 35(5): 1119-25.
  11. Shainkin-Kestenbaum R, Adler AJ, Berlyne GM, Caruso C. Effect of aluminium on superoxide dismutase. Clin Sci (Lond). 1989 Nov; 77(5): 463-6.
  12. Kawase T, Orikasa M, Suzuki A. Aluminofluoride- and epidermal growth factor-stimulated DNA synthesis in MOB 3-4-F2 cells. Pharmacol Toxicol. 1991 Nov; 69(5): 330-7.
  13. Gomes MG, Moreira CA, Mill JG, Massaroni L, Oliveira EM, Stefanon I, Vassallo DV. Effects of aluminum on the mechanical and electrical activity of the Langendorff-perfused rat heart. Braz J Med Biol Res. 1994 Jan; 27(1): 95-100.
  14. Jope RS. Modulation of phosphoinositide hydrolysis by NaF and aluminum in rat cortical slices. J Neurochem. 1988 Dec; 51(6): 1731-6.
  15. Husaini Y, Rai LC, Mallick N. Impact of aluminium, fluoride and fluoroaluminate complex on ATPase activity of Nostoc linckia and Chlorella vulgaris. Biometals. 1996 Jul; 9(3): 277-83.
  16. Blair HC, Finch JL, Avioli R, Crouch EC, Slatopolsky E, Teitelbaum SL. Micromolar aluminum levels reduce 3H-thymidine incorporation by cell line UMR 106-01. Kidney Int. 1989 May; 35(5): 1119-25.
  17. Lai JC, Lim L, Davison AN. Effects of Cd2+, Mn2+, and Al3+ on rat brain synaptosomal uptake of noradrenaline and serotonin. J Inorg Biochem. 1982 Nov; 17(3): 215-25.
  18. Shainkin-Kestenbaum R, Adler AJ, Berlyne GM, Caruso C. Effect of aluminium on superoxide dismutase. Clin Sci (Lond). 1989 Nov; 77(5): 463-6.
  19. Department of Health and Human Services National Vaccine Program Office Presents: Workshop on Aluminum in Vaccines. Caribe Hilton International Hotel, San Juan, Puerto Rico: Jointly sponsored by: task Force for Child Survival and Development. May 12, 200.
  20. Varner JA, Jenson KF, Harvath W, Isaacson RL. Chronic administration of aliminum-fluoride or sodium-fluoride to rats in drinking water: alterations in neuronal and cerebrovascular integrity. Brain Res 784: 284-298, 1998.
  21. Strunecka A, Pataocka J. Aluminofluoride complexes: new phosphate analogues for laboratory investigations and potential danger for living organisms.
    http://www.fluoridation.com/brain3.htm
  22. Candura SM, Castildi AF, et al. Interaction of aluminum ions with phosphoinositide metabolism in rat cerebral cortical membranes. Life Sci 49: 1245-1252, 1991.
  23. Publicover SJ. Brief exposure to the G-protein activator NaF/ AlCl3 induces prolonged enhancement of synaptic transmission in area of rat hippocampal slices. Expl Brain Res 84: 680-684, 1991.
  24. Brenner A. Macrophagic myofascitiitis: a summery of Dr. Supp 3): S5-6, 2002.LGherardi's presentations. Vaccine 20
  25. Lacson AG, D'Cruz CA, et al. Aluminum phagocytosis in quadriceps muscle following vaccination in children: relationship to macrophagic myofasciitis. Pediatr Dev Pathol 5: 151-158, 2002.
  26. Flarend RE, Hem SL, et al. In vivo absorption of aluminum-containing vaccine adjuvants using 26 Al. Vaccine 15: 131401318, 1997.
  27. Authier FJ Cherin P, et al. Central nervous system disease in patients with macrophagic myofasciitis. Brain 124: 974-983, 2001.
  28. Gherardi RK. Lessons from macrophagic myofasciitis: towards definition of a vaccine adjuvant-related syndrome. Rev Neurol (Paris) 159: 162-164, 2003.
  29. Bergfors E, Trollfors B, Inerot A. Unexpectantly high incidence of persistent itching and delayed hypersensitivity to aluminum in children after the used of absorbed vaccines from a single manufacturer. Vaccine 22: 64-69, 2003.
  30. Deloncle R, Fauconneau B, et al. Aluminum L-glutamate complexes in rat brain cortex: in vivo prevention of aluminum deposit by magnesium D-aspartate. Brain Res 946: 247-252, 2002.
  31. Mundy WR, Freudenrich TM, Kodavanti PR. Aluminum potentates glutamate-induced calcium accumulation and iron-induced oxygen free radical formation in primary neuronal cultures. Mol Chem Neuropathol 32: 41-57, 1997.
References Concerning Lead
  1. Naatala JT, Loikkanen JJ, et al. Lead amplifies glutamate-induced oxidative stress. Free Radical Biology Medicine 19: 689-693, 1995.
  2. Morgan RE, Garavan H, et al. Early lead exposure produces lasting changes in sustained attention, response initiation, and reactivity to errors. Neurotoxicology and Teratology 23: 519-531, 2001.
  3. Needleman HL, McFarland C, et al. Bone lead levels in adjudicated delinquents: A case control study. Neurotoxicology and Teratology 24: 711-717, 2002.
  4. Dietrich KN, Ris MD, et al. Early exposure to lead and juvenile delinquency. Neurotoxicology and Teratology 23: 511-518, 2001.
My References
  1. Blaylock R. Interaction of cytokines, excitotoxins, and reactive nitrogen and oxygen species in autism spectrum disorders. J. Amer Nutr Assoc 6: 21-35, 2003.
  2. Blaylock RL. The central role of excitotoxicity in autism spectrum disorders. J Amer Nutra Assoc 6: 7-19, 2003.
  3. Blaylock RL. Chronic microglial activation and excitotoxicity secondary to excessive immune stimulation: possible factors in Gulf War Syndrome and autism. J Amer Phys Surg 9: 46-51, 2004.